您好,欢迎来到login_星欧(官方)代理招商直营娱乐!

首页> 《中国测试》期刊 >本期导读>基于共振增强原理的聚音器设计

基于共振增强原理的聚音器设计

393    2024-07-25

¥0.50

全文售价

作者:李勇, 陆炳健, 何天雨, 陈挺, 鞠玲

作者单位:国网江苏省电力有限公司泰州供电分公司,江苏 泰州 225300


关键词:指数型聚音曲面;声学谐振腔;有限元仿真;非接触式声学测量


摘要:

测量微弱声学信号时,存在信号易被环境噪声淹没的问题,导致测量结果信噪比较差。针对此,该文以具有指数型曲面的声学谐振腔为研究对象,探究声音在谐振腔中的传播特性及其对微弱声学信号的共振增强机理。利用声学波动理论分析与有限元建模仿真,在硬声场边界条件下建立声学谐振腔的频率响应与内部声压模型,进而利用实验对其声学放大与信噪比提升特性进行表征。理论与实验结果表明,声学谐振腔能够有效放大特定频率声学信号5~10倍,且明显改善信号的非线性失真。该文的研究,揭示聚音器定频增强的机理,证明指数型曲面声学谐振腔可作为非接触式声学测量前端放大装置的潜力。


Polyphonic design based on the resonance enhancement principle
LI Yong, LU Bingjian, HE Tianyu, CHEN Ting, JU Ling
Taizhou Power Supply Branch,State Grid Jiangsu Electric Power Co., Ltd., Taizhou 225300, China
Abstract: Measurement of weak acoustic signals is easily affected by environmental noise, leading to poor signal-to-noise ratio of the results. In this article, an acoustic resonant resonator with an exponential profile and its resonant-enhancement characteristics of sound is investigated. Using acoustic fluctuation theory analysis and finite element modeling simulation, the frequency response and internal sound pressure model of the acoustic resonant cavity are established under hard acoustic field boundary conditions. Then the acoustic amplification and signal-to-noise ratio enhancement characteristics are evaluated in experiments. The theoretical and experimental results show that the acoustic resonant cavity can effectively amplify the acoustic signal with specific frequencies by 5-10 times, and significantly improve the nonlinear distortion of the signal. This study reveals the mechanism of the resonant-enhancement of the acoustic resonator and demonstrates its potential as a front-end amplification device for non-contact acoustic measurements.
Keywords: exponential acoustic horn;acoustic resonator;finite element simulation;non-contact acoustic measurements
2024, 50(7):124-130  收稿日期: 2022-09-21;收到修改稿日期: 2023-04-26
基金项目: 国网江苏省电力有限公司科技项目(J2021208)
作者简介: 李勇(1975-),男,江苏扬州市人,高级工程师,研究方向为电力设备智能运检。
参考文献
[1] WANG Y, ZHU X, ZHANG T S, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230: 52-61.
[2] KIM S, CHOI J, SEUNG H M, et al. Gradient-index phononic crystal and Helmholtz resonator coupled structure for high-performance acoustic energy harvesting[J]. Nano Energy, 2022, 101: 107544.
[3] SHANG Z J, WU H P, WANG G, et al. Theoretical analysis and experimental optimization of an elliptical acoustic resonator in quartz-enhanced photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical, 2022, 373: 132718.
[4] CHEN T G, JIAO J R, YU D J. Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing[J]. Journal of Sound and Vibration, 2022, 529: 116911.
[5] 邵宇鹰, 王枭, 彭鹏, 等. 基于声成像技术的电力设备缺陷检测方法研究[J]. 中国测试, 2021, 47(7): 42-48.
SHAO Y Y, WANG X, PENG P, et al. Research on defect detection method of power equipment based on acoustic imaging technology[J]. China Measurement & Test, 2021, 47(7): 42-48.
[6] 梁成义. 号筒扬声器的工作原理和设计[J]. 电声技术, 2004(1): 16-20.
LIANG C Y. The working principle and design of horn speakers[J]. Electroacoustic Technology, 2004(1): 16-20.
[7] 王心华, 赵瑞丰, 李健, 等. 传统号筒扬声器的讨论与优化[J]. 大学物理实验, 2020, 33(5): 60-66.
WANG X H, ZHAO R F, LI J, et al. Discussion and optimization of traditional horn speakers[J]. University Physics Experiment, 2020, 33(5): 60-66.
[8] 钱明哲. 指数号筒截止频率的设计[J]. 电声技术, 1995(1): 26-27.
QIAN M Z. Design of cutoff frequency for index horn[J]. Electroacoustic Technology, 1995(1): 26-27.
[9] 张锴, 姚伟达, 沈小要. 指数形号筒声场共振的理论及模拟研究[C]. //第十六届全国反应堆结构力学会议论文集. 2010: 49-66.
ZHANG K, YAO W D, SHEN X Y. Theoretical and simulation research on resonance of exponential horn sound field [C]// Proceedings of the 16th National Conference on Reactor Structural Mechanics, 2010: 49-66.
[10] LIM S G, JIN O K. Acoustic directivity of an ultrasonic sensor depending on horn guide shape dimension[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2018, 28(6): 707-712.
[11] 汪建新, 尹潇靓, 唐岳, 等. 热声制冷机谐振管形状对管内声场分布的影响[J]. 机械设计与制造, 2016(2): 191-194.
WANG J X, YIN X LG, TANG Y, et al. The influence of the shape of the resonant tube in a thermoacoustic refrigerator on the distribution of sound field inside the tube[J]. Mechanical Design and Manufacturing, 2016(2): 191-194.
[12] 杜功焕, 朱哲民. 声学基础-第2版[M]. 南京: 南京大学出版社, 2001.
DU G H, ZHU Z M. Fundamentals of acoustics -2nd edition [M]. Nanjing: Nanjing University Press, 2001.
[13] 高斌, 杨录, 张梁, 等. 锥形聚音器声传播特性研究[J]. 测试技术学报, 2021, 35(3): 224-229.
GAO B, YANG L, ZHANG L, et al. A study on the sound propagation characteristics of conical concentrators[J]. Journal of Testing Technology, 2021, 35(3): 224-229.
[14] 孙生生, 苏锋, 叶昆鹏, 等. 锥形管和指数形管内的声场研究[J]. 低温与超导, 2014, 42(4): 79-82.
SUN S S, SU F, YE K P, et al. A study on the sound field inside conical and exponential tubes[J]. Low Temperature and Superconductivity, 2014, 42(4): 79-82.